Expression Profiling of Castanea Genes during Resistant and Susceptible Interactions with the Oomycete Pathogen Phytophthora cinnamomi Reveal Possible Mechanisms of Immunity
نویسندگان
چکیده
The most dangerous pathogen affecting the production of chestnuts is Phytophthora cinnamomi a hemibiotrophic that causes root rot, also known as ink disease. Little information has been acquired in chestnut on the molecular defense strategies against this pathogen. The expression of eight candidate genes potentially involved in the defense to P. cinnamomi was quantified by digital PCR in Castanea genotypes showing different susceptibility to the pathogen. Seven of the eight candidate genes displayed differentially expressed levels depending on genotype and time-point after inoculation. Cast_Gnk2-like revealed to be the most expressed gene across all experiments and the one that best discriminates between susceptible and resistant genotypes. Our data suggest that the pre-formed defenses are crucial for the resistance of C. crenata to P. cinnamomi. A lower and delayed expression of the eight studied genes was found in the susceptible Castanea sativa, which may be related with the establishment and spread of the disease in this species. A working model integrating the obtained results is presented.
منابع مشابه
First interspecific genetic linkage map for Castanea sativa x Castanea crenata revealed QTLs for resistance to Phytophthora cinnamomi
The Japanese chestnut (Castanea crenata) carries resistance to Phytophthora cinnamomi, the destructive and widespread oomycete causing ink disease. The European chestnut (Castanea sativa), carrying little to no disease resistance, is currently threatened by the presence of the oomycete pathogen in forests, orchards and nurseries. Determining the genetic basis of P. cinnamomi resistance, for fur...
متن کاملArabidopsis late blight: infection of a nonhost plant by Albugo laibachii enables full colonization by Phytophthora infestans
The oomycete pathogen Phytophthora infestans causes potato late blight, and as a potato and tomato specialist pathogen, is seemingly poorly adapted to infect plants outside the Solanaceae. Here, we report the unexpected finding that P. infestans can infect Arabidopsis thaliana when another oomycete pathogen, Albugo laibachii, has colonized the host plant. The behaviour and speed of P. infestans...
متن کاملCucumber Response to Sphaerotheca fuliginea: Differences in Antioxidant Enzymes Activity and Pathogenesis-Related Gene Expression in Susceptible and Resistant Genotypes
Cucurbits powdery mildew is one of the most detrimental diseases of cucumber plants worldwide. A detailed insight into the biological processes leading to resistance or susceptibility to the pathogen would pave the road for an efficient disease-resistance breeding program. In the present study, the molecular and biochemical responses of a resistant vs. a susceptible cucumber cultivar infected w...
متن کاملInduced Acidic chitinase Expression and Scab-Resistant in Wheat Under Field Condition
Fusarium head blight (FHB) caused by Fusarium graminearum is responsible for billions of dollars in agriculture losses. The goal of the present study was evaluation the expression of acidic chitinase, one of PR proteins, in wheat defense response against different FHB induced treatments in 'Falat' as a highly susceptible and 'Sumai3' as a tolerant cultivar. These treatments contained fungi extr...
متن کاملDual RNA-Sequencing of Eucalyptus nitens during Phytophthora cinnamomi Challenge Reveals Pathogen and Host Factors Influencing Compatibility
Damage caused by Phytophthora cinnamomi Rands remains an important concern on forest tree species. The pathogen causes root and collar rot, stem cankers, and dieback of various economically important Eucalyptus spp. In South Africa, susceptible cold tolerant Eucalyptus plantations have been affected by various Phytophthora spp. with P. cinnamomi considered one of the most virulent. The molecula...
متن کامل